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We continue with the 1997 work of Noca et al. and o!er some additional closed-form
expressions (and their derivations) for the evaluation of time-dependent forces on a body in an
incompressible, viscous, and rotational #ow, which require only the knowledge of the velocity
"eld (and its derivatives) in a "nite and arbitrarily chosen region enclosing the body. In
particular, we o!er an expression for the force which only depends on the velocity "eld (and its
derivatives) on the surface of an arbitrary control volume. These expressions are particularly
useful for experimental techniques like Digital Particle Image Velocimetry (DPIV) which
provide time sequences of 2-D velocity "elds but not pressure "elds. For some common #ow
situations (freely moving objects, #exible bodies, #ying and swimming animals, low Reynolds
number #ows, soap "lm tunnels), these techniques may be more viable than traditional methods
(strain gages). The formulations can also be of some interest to the Computational Fluid
Dynamics (CFD) community, especially when pressure is not evaluated explicitly, such as
in vorticity-based algorithms. From a theoretical point of view, they provide an explicit relation
between loading and #ow structure. In the present work, the formulations are tested
on a numerical #ow simulation using a high-resolution vortex method and experimentally with
DPIV on a circular cylinder #ow. ( 1999 Academic Press
1. INTRODUCTION

WHEN A BLUFF BODY is submerged into a #uid in relative motion, it experiences a force. The
existence of such a force has been demonstrated long before the emergence of the science of
#uid mechanics: the force of the #uid #ow onto the body can be evaluated directly from the
external force needed to hold the body onto a given trajectory. This is an extrinsic
measurement, which can be performed with displacement gages. For in"nitesimal relative
displacements, strain gages are commonly used. Gharib (1999) has recently succeeded in
measuring unsteady #uid forces from time displacement data of a cylinder performing large
amplitude vortex-induced oscillations under the restoring force of a spring system.

Alternatively, the force exerted by the #uid on the blu! body can be derived from the
equations of #uid mechanics and evaluated using measured #ow-"eld quantities: this is an
intrinsic measurement, upon which the present paper is based. Intrinsic methods are made
possible today in experimental work, thanks to the advent of techniques such as Digital
Particle Image Velocimetry (DPIV) which allow the spatial and temporal measurement of
velocity "elds.

An intrinsic method surpasses an extrinsic technique by its ability to measure sectional
forces (Noca et al. 1997), small force levels [as for low Reynolds number #ows, see Noca
0889}9746/99/050551#28 $30.00 ( 1999 Academic Press
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(1997)], and #uid forces in situations where gages are not practical (#ying and swimming
animals, #exible cables, o!shore platforms, etc.). Mostly, an intrinsic method may yield
a quantitative functional relationship between the #uid-dynamic force and the vorticity
patterns in the near wake of the object, which an extrinsic measurement cannot do. For
instance, it may shed some light on the direct relation between the force acting on a cylinder
and the various forms of vortex patterns observed in the wake of a cylinder in forced motion
(Williamson & Roshko 1988). It may also help to relate wake structure to the frequency and
amplitude of a freely oscillating body in a cross #ow, as exempli"ed in many recent studies
[see, for instance, Gharib (1999) or Khalak & Williamson (1997) and the references therein].

The fundamental equation for the evaluation of forces from #ow-"eld quantities is the
momentum equation in integral form. Given an arbitrary, time-dependent control volume
<(t) (Figure 1) bounded externally by a surface S (t) and internally by the body surface S

b
(t),

the #uid dynamic force F acting on a body can be expressed as (for a #uid of unit density)

F"!

d

dt P
V (t)

u d<

#Q
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n} ' [!pI!(u!u
S
) u#T] dS (1.1)

!QS
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(t)

n} ' (u!u
S
) udS,

where n} is a unit vector (see Figure 1), u is the #ow velocity, u
S
is the body wall velocity, p the

pressure, I the unit tensor, and T the viscous stress tensor for an incompressible #ow:

T"k ($u#$uT),

where k is the coe$cient of dynamic viscosity. The surface integral over the body is null for
a no-through-#ow condition. It can be evaluated explicitly from known boundary condi-
tions in the case of #uid #ow through the body surface (jet thrusters, salps, etc.). As it stands,
equation (1.1) requires the knowledge of the pressure ,eld p.

In Computational Fluid Dynamics (CFD), the pressure can generally be solved for as one
of the primitive variables (Fletcher 1991) or, as in vortex-based methods, can be evaluated
by an integration of the momentum equation over the known velocity "eld (Koumoutsakos
& Leonard 1995).
Figure 1. Domain of integration for the evaluation of #uid-dynamic forces on a blu! body.
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In experimental aerodynamics, pressure and #ow velocity can be measured directly, and
steady-state forces can then be estimated from wake-survey methods based on equation
(1.1) [for recent reviews, see Wu & Wu (1996), Brune (1994), Chometon & Laurent (1990),
Maskell (1972); for classical results, see Schlichting (1986)]. Interestingly, wake-survey
methods do not even require a knowledge of the pressure "eld for an estimation of
steady-state lift forces [for recent work, see Wu & Wu (1996), Brune (1994), Tokumaru
(1991)].

In low-speed hydrodynamics, the di$culty of performing pressure measurements may
preclude the direct use of equation (1.1). Often, suitable simplifying assumptions about the
pressure "eld can be made when wake-surveys are performed several body diameters
downstream (Townsend 1976). Alternatively, when the velocity "eld is known, the pressure
term can be obtained rigorously from an integration of the momentum equation (as in
vortex-based computations). The latter method has been successfully implemented by Unal
et al. (1998) in their PIV experiments.

However, aside from the fact that an additional step is needed to evaluate the pressure,
equation (1.1) does not provide an explicit relationship between the wake con"guration and
the force on the body because some of the #ow information is hidden in the pressure term.

With suitable algebra, some of these inconveniences can be removed by transforming
equation (1.1) into a form which involves only the time derivative of the impulse over an
in,nite domain:

F"!

1

N!1
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#

1

N!1
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dt QS
b
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n} ' (u!u
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) u dS, (1.2)

where x is the vorticity "eld, x the position vector, and N the dimension of the space
(N"3 in 3-D and N"2 in 2-D). Note again that the integral over the body surface can
be evaluated explicitly from a knowledge of the boundary conditions.

Equation (1.2) has traditionally been known to be valid for in"nite #uid regions
(Batchelor 1967; Lamb 1945), in which &&#uidic bodies'' are delineated by kinematic
surfaces (Sa!man 1993). Wu (1981) showed that equation (1.2) was equally valid for regions
containing solid bodies. Lighthill (1996) did realize the importance of Equation (1.2) for the
measurement of unsteady forces in "eld applications, such as loading on o!shore structures.

Equation (1.2) requires that there be no net circulation in a 2-D space and, mostly, that
the entire vorticity "eld be known. For vortex-based methods in CFD, this procedure is
satisfactory since computations are carried out over a "nite time during which the whole
vorticity "eld can be accounted for (Koumoutsakos & Leonard 1995). The latter method
has been applied in an experiment by Lin & Rockwell (1996) on the loading of an oscillating
cylinder in quiescent water. Starting the cylinder from rest, they studied the #ow"eld at
early times to help con"ne the vorticity to a small domain surrounding the body. However,
in most experimental cases, it is rare for vorticity to be con"ned to a small domain.

Recently, Quartapelle & Napolitano (1982) succeeded in eliminating the pressure vari-
able from equation (1.1), although at the cost of introducing an additional variable. The
latter variable has the advantage of being #ow-independent and only geometry-dependent,
i.e., it is designed to be harmonic in the region bounded internally by the body surface and
externally by the control volume boundary, with given Neumann boundary conditions on
these surfaces. The resulting closed-form equation, valid for unsteady #ows at arbitrary
values of the Reynolds number, is based only on this geometry function and the velocity
"eld (and its derivatives) in a "nite and arbitrarily chosen region enclosing the body. For
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simple body geometries (circular cylinder or sphere) and control volume boundaries at
in"nity, the harmonic function can be solved explicitly. Unfortunately, it needs to be solved
numerically for more complicated geometries and "nite control volumes. On a positive
note, the asymptotic behaviour of the function at large distances from the body is such as to
remove any time-derivatives from the equation when in"nite domains are considered
[unlike equation (1.2]). Quartapelle & Napolitano equation has recently been implemented
successfully by Protas et al. (1999) in their numerical computations.

In the present text, we lay out alternate equations which do not exhibit the limitations of
either equations (1.1) or (1.2). These are, in our terminology, the &&impulse equation'', the
&&momentum equation'', and the &&#ux equation'', which do not require the explicit evalu-
ation of the pressure "eld and are based on the velocity "eld and its derivatives in an
arbitrary, "nite control volume. Besides being in closed-form, these equations are also fully
explicit, unlike Quartapelle & Napolitano (1982) equation.

2. FORCE EQUATIONS

2.1 EQUATION I: THE &&IMPULSE EQUATION''

This equation was given without proof in previous work (Noca et al. 1997). It is an extension
to equation (1.2) for a ,nite domain, and does not require the explicit evaluation of pressure.

2.1.1. Equation I
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2.1.2. Proof
The inviscid form of the &&impulse equation'', equation (2.1), is derived by Sa!man (1993).
The complete formulation for viscous and rotational #ows is given by Moreau (1952). Both
authors, however, use the &&#uidic body'' concept (Leonard 1987) to carry the algebra, and
their integrations extend over the whole space including the body. Here, we present
a derivation which preserves the identity of the body, i.e., integrations are carried over the
#uid only.

Transformations between volume and surface integrals are performed with the con"gura-
tion shown in Figure 2. Surface integrations over the umbilicus or &&branch cut'' S

u
vanish.

The volume <(t) is always simply connected and is delineated externally by the surface S (t)
and internally by the body surface S

b
(t).

The space dimension N is kept in the formulae throughout the derivations. However,
most of the equations involve the vorticity vector which can be de"ned rigorously only in



Figure 2. Control volume analysis.
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three dimensions, that is N"3. Nevertheless, a vorticity vector for planar #ows can be
de"ned by extending the vortex lines to in"nity in a direction normal to the plane of the
#ow. In this case, the #ow is e!ectively two-dimensional, and we can set N"2.

Starting from equation (1.1) and using the identity given by equation (B.1) in the
Appendix B with a"u, we obtain
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The time derivative of the surface integral can be manipulated through the use of a kin-
ematic identity given by equation (B4) in Appendix B. Writing the integrand as

x'' (n} ''u)"n} ' [(x ' u) I!xu],

identity (B4) yields
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The time derivative can be transformed back to
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where the time derivative of u can be obtained from the Navier}Stokes equations,
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The divergence term can be evaluated from equation (A1) in Appendix A,

$ ' [(x ' u) I!xu]"!(N!1)u#x''x.

The result is
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The critical step in this derivation is the transformation of the integral involving the
pressure in equation (2.3) through the use of identity (B3) of Appendix B,
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Insertion of these results into equation (2.2) shows that the pressure term drops out, and
"nally yields the desired expression for the &&impulse equation'', Equation I.

2.1.3. Discussion
If in Equation I, the surface S (t) is taken to in"nity, such that it encloses the whole vorticity
"eld* and, in two dimensions, if there is no net circulation around the body* then the
surface integral over S (t) vanishes and we recover the force as the time derivative of the
hydrodynamic impulse, equation (1.2).

Equation I can be put in yet another form, similar to Sa!man's (1993), by converting
some of the surface integral terms to a volume integral:
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The volume integral is essentially the Kutta}Zhukovski component of the force (Noca
1997).

2.2 EQUATION II: THE &&MOMENTUM EQUATION''

We now present an equivalent expression which closely parallels equation (1.1) but does not
involve the pressure term.

2.2.1. Equation II
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2.2.2. Proof
The &&momentum equation'' can be obtained by inserting identity (B1) with a"u into
Equation I and using some of the results of the previous section (Noca 1997).

2.2.3. Discussion
The interesting feature about this equation is that it can be compared directly with the
original conservation of momentum relation, equation (1.1). As a matter of fact, the
troublesome pressure term can now be evaluated in closed form:
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This relation can be rearranged into the following more elegant form:
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Equation (2.7) may alternatively be obtained from identity (B3), since from the Navier}
Stokes equations, we have

m
p
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2
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Equation (2.6) reveals that as the surface S (t) is taken to in"nity (thereby enclosing the
whole vorticity "eld), the surface integral of the pressure does not vanish because of the
time-derivative terms. It is possible to show that in the 3-D case, the integral is conditionally
convergent and can be expressed in terms of the time derivative of the impulse (Sa!man
1993; Batchelor 1967).
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2.3. EQUATION III: THE &&FLUX EQUATION''

Both Equations I and II require the evaluation of volume integrals over the control volume
and, in particular, over the boundary layer region next to the body. Even though
the &&momentum equation'' is more forgiving than the &&impulse equation'' in this respect (the
former requires the volume integral of the velocity u only, whereas the latter asks for
the moment of vorticity x''x), this task may be prohibitive since boundary layers are
highly under-resolved in most experimental situations.

To eliminate this inconvenience, we derive an additional equation which involves surface
integrals only, with the added constraint that the velocity "eld be divergence free ($ ' u"0).

2.3.1. Equation III
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2.3.2. Proof
If identity (B5) or identity (B6) are inserted into Equation I or Equation II, respectively, with
a equal to the #ow velocity u, Equation III is recovered as long as the #ow is incompressible
($ ' u"0).

2.3.3. Discussion
The &&#ux equation'' in its time-dependent form can yield time-dependent forces from data
collected on an arbitrary surface surrounding the whole body. In the case of wakes extending
downstream from the body, one could ask whether equation (2.10) could be used to estimate
time-dependent forces from a wake survey only, i.e. from data collected on a surface
crossing the wake arbitrarily close to the body. The question has not been tested in this
work, but it is probable that the surface integration of terms involving the product of x and
Lu/Lt does not converge at large distances away from the wake.

For the time-averaged case, all three equations (I, II, and III) yield the same result,
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In the case of wakes extending downstream from the body, equation (2.11) allows the
evaluation of time-averaged forces from near-wake surveys, i.e., from data collected on
a surface crossing the wake arbitrarily close to the body, without any a priori assumption
about pressure. As for any wake-survey procedure, care has to be exercised in regards to the
contribution of small terms at large distances away from the wake (Wu & Wu 1996; Maskell
1972), speci"cally the "rst two terms on the right-hand side of equation (2.12), 1

2
Su2T I and

!SuuT.
Compared to traditional wake-survey methodologies, the present formulation provides

an explicit expression for the pressure contribution to the force. The original force formula-
tion, equation (1.1), can be recast in its time-averaged form,
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where the pressure integral can be expressed in explicit form with the help of either equation
(2.7) or equations (2.11) and (2.12),
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Apart from the fact that this integral can be evaluated straightforwardly from a knowledge
of the velocity "eld, it requires data only across the limited region of the wake where
vorticity and viscous e!ects are present.

3. NUMERICAL APPLICATION

The computational procedure has been documented in recent work (Shiels 1998; Noca
et al. 1997), and only the basic features are presented here. A high-resolution, two-dimen-
sional vortex-method code (Koumoutsakos & Leonard 1995) was used for the case of
a circular cylinder of diameter D placed in a free stream of velocity ; and performing
a transverse oscillation with velocity ; sin[(4n/13);t/D], where t denotes time. The
Reynolds number, de"ned as Re";D/l with l the kinematic viscosity, was equal to 392.
Figure 3 shows the vorticity "eld at ;t/D"12 (following an impulsive start at t"0).
A time step of dt"0)0075D/; was used, and spatial resolution of approximately (in
a Lagrangian sense) dx+0)004D was maintained.

The lift coe$cient on the cylinder was computed with di!erent methods:
(i) pressure and shear stress on the body surface, equation (1.1) with S (t) coinciding with

the body surface S
b
(t) (volume integrals vanish);

(ii) &&impulse equation'' for an in"nite domain, equation (1.2);
(iii) &&impulse equation'' for a "nite domain, equation (2.1), with ungridded data (where

the domain of integration is shown by the box, "xed in the body reference frame, surround-
ing the cylinder in Figure 3);

(iv) &&impulse equation'' for a "nite domain, equation (2.1), with data placed on a grid of
mesh size &0)004D.

Since the #ow is two-dimensional, the two-dimensional form of the equations was used
(N"2). The results for the lift coe$cient are shown in Figure 4, which is reproduced for
completeness from Noca et al. (1997). For the ungridded data, the force is computed at every
time-step with time derivatives (when necessary) being evaluated from consecutive images



Figure 3. Vorticity "eld at time ;t/D"12 obtained from computations, showing bounding box for force
calculations ("xed in the body reference frame).

Figure 4. Comparison of lift coe$cients C
L

versus nondimensional time ;t/D, obtained by several methods:
. . . , &&impulse equation'' in an in"nite domain (particle-based data);** , pressure and shear stress on the body;
!!!, &&impulse equation'' in a "nite domain (particle-based data); ###, &&impulse equation'' in a "nite

domain (gridded data).

560 F. NOCA E¹ A¸.
0)0075D/; apart, without any "ltering. For the gridded data, the instantaneous forces are
evaluated and plotted at instants of time 0)3;t/D, using two consecutive images 0)0075D/;
apart for the computation of time-derivatives, without any averaging. The agreement is
clearly very satisfactory.

Similar trends were obtained for the drag coe$cient (Shiels 1998).



Figure 5. Vorticity "eld at time ;t/D"12 obtained from computations, with data placed on a coarse grid.

Figure 6. Comparison of lift coe$cients C
L

versus nondimensional time;t/D, obtained by several methods:*,
&&exact'' data;*C*, &&impulse equation''with coarsely, gridded data;*f*, &&momentum equation''with coarsely,-

gridded data.
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To emulate experimental situations, the (accurately resolved) numerical data was placed
on a coarser grid with grid size of \0)05D instead of a "ne grid size of \0)004D as in the
previous case. A snapshot of the vorticity "eld placed on such a grid is shown in Figure 5 for
time ;t/D"12 (as in Figure 3).

The size of Figure 5 also represents the box size used for the domain of integration (it is
slightly di!erent from the one used for the well-resolved data, Figure 3). The result for the
lift coe$cient obtained with the &&impulse equation'' is shown in Figure 6 and compared to



Figure 7. Comparison of lift coe$cients C
L

versus nondimensional time;t/D, obtained by several methods:*,
&&exact'' data; *C*, &&momentum equation'' with coarsely gridded data; *f*, &&#ux equation'' with coarsely
gridded data. (The open circle symbols may not be apparent on the graph because they lie almost exactly

underneath the solid circle symbols.)
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the &&exact'' result as obtained with the "ner grid. For the coarse grid, the instantaneous
forces are evaluated and plotted at instants of time 0)5;t/D, using two consecutive images
0)0075D/; apart for the computation of time derivatives, without any averaging.

Again, the results are very satisfactory. As a comparison, the &&momentum equation'' was
tested on this coarsely gridded data, and Figure 6 certainly shows that the latter equation
fares better than the corresponding &&impulse equation''. This suggests that volume integra-
tion of velocity data is preferable to volume integration of vorticity data (or more exactly,
moment of vorticity data x''x). We will return to this point when discussing our
experimental results. The results for the &&#ux equation'' are given in Figure 7, and again
reveal a good agreement with the &&exact data''. As a comparison, the results using the
&&momentum equation'' are plotted as well, and these show remarkable agreement with the
&&#ux equation''. The reason for this behaviour will be given later when comparing the &&#ux
equation'' and the &&momentum equation''.

4. EXPERIMENTAL APPLICATION

4.1 EXPERIMENTAL SETUP

The experiments were conducted in the GALCIT Towing Tank (Williamson 1988). The
tank is 450 cm long, 96 cm wide and 78 cm deep. The water height is typically 75 cm. On top
of the tank, a carriage rides on stainless-steel wheels along two cylindrical rails which run
parallel to the length of the tank. The carriage is driven by a pulley and cable system linked
to a DC servo motor which is computer controlled.

The model used was a circular cylinder of diameter D"1 cm. When immersed, its aspect
ratio was about 75. The cylinder was held vertically and was adjusted to graze the bottom of
the tank (about 2 mm o! the bottom) with no end-plate at the lower end (Slaouti & Gerrard
1981).

The boundary condition at the upper end of the cylinder was dictated by the supporting
mechanism for the cylinder. A 30 cm]30 cm, 1

2
in thick, Plexiglas plate was attached to



Figure 8. Sketch of experimental setup.

Figure 9. Carriage velocity pro"les u/; versus time t/¹ : sinusoidal velocity pro"le of frequency f"1/¹"0)164
Hz with zero minimum velocity and peak velocity ;"1 cm/s.
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the carriage and placed #at on top of the water surface. The purpose of the plate was to hold
the cylinder vertically and at the same time allow optical access from the top over the whole
circumference of the cylinder, as shown in Figure 8 (thereby the need for a transparent
plate).

With the plexiglas plate not touching the water, a lensing e!ect, due to a meniscus at the
cylinder and water surface junction, prevented the #ow"eld from being resolved very near
the cylinder. We removed the problem by lowering the plexiglas plate by a couple of
millimeters into the water. However, as demonstrated by Slaouti & Gerrard (1981), the plate
is not an ideal boundary condition for promoting parallel shedding along the whole span of
the cylinder. Nevertheless, since the motion of the cylinder was forced, the #ow preserved
a two-dimensional character, a necessary condition for the implementation of a force
formulation with a two-dimensional technique such as DPIV.
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The motion imposed on the cylinder consisted of a combined translation and in-line
oscillation, as shown in Figure 9. The frequency of oscillation f was arbitrarily chosen such
that it matched the natural shedding frequency of a steady cylinder #ow at the peak velocity
;. In nondimensional units, the essential parameters were the jerking frequency or Strouhal
frequency St"fD/;"0)164 and the peak Reynolds number Re";D/l"100.

All of the results were acquired in a non-inertial frame "xed with the cylinder. In the
present experiments, the forces evaluated from the #ow"elds were not corrected for the
frame acceleration.

Velocity "elds were captured with Digital Particle Image Velocimetry as described by
Willert & Gharib (1991). A laser sheet was projected horizontally at the cylinder midspan,
from the downstream side of the cylinder. In order to provide illumination over the whole
circumference of the cylinder, including the upstream side, a thin-wall, glass cylinder "lled
with water was used.

The particle "elds were captured with a 768]480 pixel2 CCD camera, and later analyzed
with windows of 32]32 pixel2. During the process, the analyzing windows were overlapped
such that (non-independent) velocity vectors were evaluated for every 8]8 pixel2 region.
Since the cylinder was 168 pixels in diameter on the image, the grid size for the velocity data was
approximately 0)048D, which is similar to the coarse grid used in the computational study.

The sampling frequency for the velocity "elds was 30 (in nondimensional units), which
was reasonably high compared to the jerking frequency of 0)164. The #ow was, thus,
temporally well resolved. The spatial velocity derivatives were computed from a given
velocity "eld image, whereas the temporal derivatives were evaluated from subsequent
velocity images. Figure 10 shows an excerpt of the velocity "eld data collected during
approximately one oscillation cycle. In actuality, about 30 images lie between one image in
Figure 10 and the next. Each oscillation cycle spans approximately 180 images.

Setting the value for the Reynolds number (Re\100 to ensure two-dimensional #ow) and
the velocity "eld sampling frequency (in order for the #ow to be resolved temporally)
imposes a unique value on the cylinder diameter and velocity, which in turn determine the
expected magnitude of forces (Noca 1997). The resulting force levels were of the order of
0.05 grams which were too low for any ordinary force balance to resolve. From a negative
viewpoint, no independent force measurement could be performed, and only the self-
consistency of the results could be invoked to validate the method. As a positive aspect, the
present technique succeeded in measuring extremely low forces, thus circumventing the
limitations of mechanical devices.

4.2. RESULTS

4.2.1. ¹emporal and spatial di+erentiation
For most cases, the control volume encompassed the whole image (control volume C<1 in
Figure 11), and the origin of the position vector was taken at the center of the cylinder at O

a
.

All di!erentiations and integrations were performed with "rst-order schemes on the raw
velocity "eld data (Noca 1997). In particular, time di!erencing was performed on consecut-
ive images, i.e., with a nondimensional time-step of 0)033.

A sample un"ltered data set is shown in Figure 12. The associated power spectral density
of the signal is given in Figure 13. Besides the main peak at the forcing frequency of 0)164
(or log 0)164"!0)78 on the spectral density plot), there appears to be a peak at a fre-
quency of approximately 10 (log 10"1 on the spectral density plot). This high-frequency
noise actually arises from the tow-tank carriage which has been documented in the past
(Lisoski 1993) to vibrate at a natural frequency of approximately 10 Hz (or 10 in our
nondimensional units). Because most of the signal power lies below a nondimensional



Figure 10. Experimental velocity "eld data obtained with DPIV for a jerking cylinder. The sequence is for one
oscillation cycle starting at;t/D"4 with non-dimensional time increments of;dt/D\1)02, and runs from the top
left down the column, to the top right and down the column. In the complete data, approximately 30 additional

images lie between one image and the next. Color bar values indicate normalized #ow velocity, u/;.



Figure 11. Sketch identifying the three control volumes C<1, C<2, and C<3, as well as the three co-ordinate
origins O

a
, O

b
, and O

c
, used for the parametric study. Origin O

a
was used for all three control volumes, and control

volume C<1 was used for all three origins. The boundaries are only approximate on this sketch; see text.
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frequency of 1 (log 1"0 on the spectral density plot), it was considered safe to "lter the
signal with a 5th order Butterworth scheme, at a low-pass cuto! frequency of 1 (well above
the principal harmonic at 0)164, or log 0)164"!0)78 on the spectral density plot). The
resulting "ltered signal is shown in Figure 14.

For comparison, the force was computed also with a time-di!erencing step ten times
larger, i.e., 0)33 instead of 0)033. The raw signal shown in Figure 15 is clearly much smoother
than the one shown in Figure 12, and yet the "ltered version (Figure 14) hardly di!ers from
the signal obtained with a smaller time-di!erencing step.

4.2.2. Force equations
Forces were evaluated with the three di!erent versions of the equations, the &&impulse
equation'', the &&momentum equation'', and the &&#ux equation''. All signals were obtained
with a time-di!erencing step of 0)033, and "ltered at a low-pass cuto! frequency of 1.

The results are shown in Figure 16 and Figure 17, and seem to be self-consistent,
regardless of the equation. The &&impulse equation'' and the &&momentum equation'' seem to
yield an identical answer. A slight di!erence (\0)1) is exhibited with the &&#ux equation''.

As a repeatability test, the forces were evaluated on two distinct, but identical, runs. As
shown in Figure 18, the results are satisfactorily reproducible.

4.2.3. Geometric parameters
The forces ought to remain unaltered with changes in the size and shape of the control
volume. Figure 11 presents the three control volumes, C<1, C<2, and C<3, selected for the



Figure 12. Un"ltered drag coe$cient (uncorrected for the non-inertial, body-"xed frame) versus nondimen-
sional time;t/D, obtained with central time di!erencing (time step equal to sampling period) and the &&momentum

equation''.

Figure 13. Power spectral density of drag coe$cient, obtained with central time di!erencing (time-step equal to
sampling period).
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Figure 14. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus nondimensional time
;t/D, obtained with a low-pass cuto! at a frequency of 1 and the &&momentum equation'':**, time-step equal to

10 times sampling period; . . . , time-step equal to sampling period.

Figure 15. Un"ltered drag coe$cient (uncorrected for the non-inertial, body-"xed frame) versus nondimen-
sional time ;t/D, obtained with central time di!erencing (time step equal to 10 times sampling period) and the

&&momentum equation''.
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Figure 16. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus nondimensional time
;t/D, following a low-pass cuto! with a Butterworth "lter at a frequency of 1: **, &&impulse equation''; . . . ,

&&momentum equation''.

Figure 17. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus nondimensional time
;t/D, following a low-pass cuto! with a Butterworth "lter at a frequency of 1: *, &&momentum equation''; . . . ,

&&#ux equation''.
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Figure 18. Drag coe$cient (uncorrected for the non-inertial, body-"xed frame) versus nondimensional time
;t/D, obtained with the &&#ux equation'' for two di!erent runs: **, run 1; . . . , run 2.

Figure 19. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus nondimensional time
;t/D, obtained with low-pass cuto! at a frequency of 1 and the &&momentum equation'':**, control volume C<2;

. . . , control volume C<1.
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Figure 20. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus nondimensional time
;t/D, obtained with low-pass cuto! at a frequency of 1 and the &&momentum equation'':**, control volume C<3;

. . . , control volume C<1.

Figure 21. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus nondimensional time
;t/D, obtained with low-pass cuto! at a frequency of 1 and the &&momentum equation'': **, origin O

c
at the

downstream edge; . . . , origin O
a
at the cylinder center.
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Figure 22. Drag coe$cient (uncorrected for the noninertial, body-"xed frame) versus. non-dimensional time
;t/D, obtained with low-pass cuto! at a frequency of 1 and the &&momentum equation'': **, origin O

b
at the

bottom edge; . . . , origin O
a
at the cylinder center.
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test, with the origin of the position vector at the center of the cylinder, O
a
. With the cylinder

of diameter D at coordinate (0, 0) , C<1 spanned $1)4D in the cross-#ow direction, and
(!1)3D, #3D) in the #ow direction; C<2 extended 2D downstream; and C<3 en-
compassed $1D in the cross-stream direction. Figures 19 and 20 are the result of this
experiment: clearly, the signal is hardly a!ected by a change in control volume.

Also, since all three equations contain explicitly the position vector x, a change of origin
for this position vector is a relevant test for the self-consistency of the procedure. Control
volume C<1 was selected for the test, and, as shown in Figure 11, O

a
was chosen at the

center of the cylinder, O
b

at the lower edge of control volume C<1, and O
c

at the
downstream edge of control volume C<1. Figure 21 shows the result for the origin placed at
the center of the cylinder and at the right edge of the control volume, with very good
agreement. Similar consistency was obtained with the origin placed at the lower edge of the
ontrol volume (Figure 22), though with lesser agreement. The reason for this behaviour can
probably be attributed to the particular #ow symmetry in this experiment (Figure 10). The
origins O

a
or O

c
both lie on the line of symmetry, contrary to O

b
.

5. DISCUSSION

5.1. THE &&IMPULSE EQUATION'' AND &&MOMENTUM EQUATION''

The &&impulse equation'' requires an integration of the moment of vorticity x''x over the
volume of #uid surrounding the body. The use of such an equation may be objectionable on
the grounds that the vorticity "eld cannot be resolved in the boundary layers next to the
body. Note that only the time derivative of this integral is needed. Steady boundary layers,
therefore, would not contribute to the force.
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Nevertheless, the objection may be overruled by using an &&improved'' version of the
equation, the &&momentum equation'', which requires only the integration of the velocity
over the volume of #uid surrounding the body. One may argue that the velocity "eld being
smoother may yield better results (Unal et al. 1998).

This latter statement may be correct for some experimental methodologies, but it is not in
the present study. The only measured quantity is the velocity "eld. The vorticity "eld is a
quantity computed from the velocity "eld. Since the &&impulse equation'' and the &&mo-
mentum equation'' are related by a vector identity, namely (B.2), they should theoretically
yield the same answer just because they are both based on the same original data*the
velocity ,eld. In practice, discretization of the equations may yield a di!erent answer.
However, since the integration and di!erentiation schemes used in this study are linear (1st
order), it is simple to show that the discretized version of identity (B.2) is satis"ed identically
regardless of grid size, which implies the equivalence of the &&impulse equation'' and
&&momentum equation'' in their discretized form. This is demonstrated in Figure 16. Note
that the argument holds if the #ow is wholly three-dimensional because we are using the
two-dimensional version of the vector identity with a vector "eld based on a plane. The
vector "eld on the plane is completely arbitrary and is not even required to be divergence
free.

If an experiment were set up to measure vorticity and velocity independently, then the two
equations would probably produce di!erent answers, depending on the accuracy of the
experimental technique for measuring either "elds. Higher-order discretization schemes
would also yield di!erent results for coarse grids.

The reader may be left perplexed by the numerical results shown in the previous section,
which reveal a di!erence between the results of the &&impulse equation'' and &&momentum
equation'' (Figure 6). There, the derived quantity is the velocity "eld which is
computed from the original vorticity "eld (using the Biot}Savart law), based on the
ungridded vortex particles. The vorticity "eld is only later placed on a grid (by interpola-
tion) for the purpose of using the present equations on gridded data. Thus, it is unlikely that
the velocity "eld and gridded vorticity "eld satisfy the local relation x"+''u upon which
vector identity (B.2) is based, and which in turn dictates the identity of the &&impulse
equation'' and the &&momentum equation''. Figure 4 demonstrates the di!erence result-
ing from the use of ungridded and gridded vorticity. If the vorticity "eld had
been re-computed from the velocity "eld (obtained from the Biot}Savart law) using
x"$''u, the results from the the &impulse equation'' and the &&momentum equation''
would probably have been indistinguishable, regardless of grid size, for the reasons given in
the previous paragraph. The accuracy of both equations remains grid-size dependent,
though.

5.2 THE &&MOMENTUM EQUATION'' AND &&FLUX EQUATION''

Numerically, the &&momentum equation'' and &&#ux equation'' yield identical answers,
as shown in Figure 7. The two equations are related by vector identity (B.6) which is
identically satis"ed in the computations since $ ' u is null by construction. In its dis-
cretized forms, vector identity (B.6) is also preserved, regardless of grid size, for the reasons
discussed in the previous section regarding the &&impulse equation'' and &&momentum
equation''.

The experiments exhibit a di!erent behaviour. As just mentioned, the &&#ux equation'' is
related to the other equations through a vector identity which holds only when the velocity
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"eld is divergence free, i.e., $ ' u"0, or

Lu

Lx
#

Lv

Ly
#

Lw

Lz
"0, (5.1)

where u, v, and w are, respectively, the x-, y-, and z-component of the velocity "eld. It may be
thought that this condition should be trivially satis"ed if the experiments are conducted in
water at low speeds, in which case the #ow is practically incompressible.

However, it should be noted that the two-dimensional version of the equations is used, for
which the divergence-free condition takes the form

Lu

Lx
#

Lv

Ly
"0. (5.2)

Even though equation (5.1) is always satis"ed under incompressible conditions, it is not so
for equation (5.2). The solenoidal nature of the velocity "eld may be respected in the whole
three-dimensional #ow, and yet, the projection of the same velocity "eld onto a plane may
not be divergence free.

This point is con"rmed in Figure 17 where we plot the drag coe$cient as obtained from
the &&momentum equation'' and the &&#ux equation''. There are indeed some slight di!erences
between the two signals, and an evaluation of the velocity divergence "eld (Noca 1997)
shows that the velocity "eld is non-solenoidal near the body. We do not believe that the
velocity divergence arises because of actual intrinsic three-dimensionality. We think that it
is an artifact of the measurement, which is quite delicate especially near the body surface.
Also, since the regions near the body are regions of high strain, it may be di$cult
experimentally to force a large quantity such as Lu/Lx to cancel a similarly large quantity of
opposite sign Lv/Ly.

The question that arises naturally is which of the formulae, the &&momentum equation'' (or
equivalently, the &&impulse equation'') or the &&#ux equation'', gives the most reliable result
(we obviously mean the two-dimensional versions of these equations). If the #ow is actually
slightly three-dimensional, we do not believe that either gives an accurate result. It is
beyond the scope of the present work to include the e!ects of three dimensionality, but we
do realize that it is a relevant consideration that ought to be studied in future work. If the
#ow is two-dimensional, but the measurement generates spurious divergence in the velocity
"eld near solid boundaries, then the &&#ux equation'' gives the most accurate answer because
it does not rely on any (spurious) information contained within the control volume.

The #ux equation is thus strongly preferred in situations where the #ow cannot be
resolved accurately near the body surface.

6. CONCLUSIONS

We have presented some exact expressions for the evaluation of body forces from velocity
data. In our experiments, #uid-dynamic forces were measured by observing the #ow in an
arbitrary and "nite domain surrounding the body. A very succinct parametric study was
performed to con"rm the viability of the method. It yielded satisfactory results, which can
be summarized as follows.

1. The method was shown to be e!ective in the case of bodies in unsteady motion for
which the vortex shedding pattern is very well accentuated and the normalized force
coe$cients are very high (\2}3, as for the experiments of Unal et al. 1998). In the process,
we successfully measured time-dependent forces of the order of milligrams. Since only
self-consistency was checked in these experiments, they should be repeated with a force
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balance in order to produce independent measurements and thus determine the accuracy of
the method.

2. The essence of the present work is the ability to perform a force analysis in a relatively
small domain. We showed in particular that for large force coe$cients (\2}3), a slight
modi"cation of the domain geometry left the results unaltered. Investigators who opt to
work with larger domains or smaller force coe$cients may face convergence problems while
using these equations, since the formulations contain explicitly the position vector x which
increases linearly with distance. The position vector may act as a &&moment arm''which may
generate large terms, which ultimately need to cancel similarly large terms in order to
produce the sought force (Noca 1997). In this respect, the equation of Quartapelle & Napo-
litano (1982) may be more suitable because, contrary to the position vector x, their
harmonic function decays with distance. Unfortunately, the latter harmonic function is
nonexplicit.

3. The e!ects of intrinsic three dimensionality on a nominally two-dimensional #ow were
not treated in this work. They are not an issue for the case of two-dimensional bodies in
forced motion, for which the #ow is very close to being two-dimensional. For the general
case, it still remains unknown whether intrinsic three dimensionality in nominally two-
dimensional #ows has a direct in#uence on forces or whether it a!ects forces by modifying
the large-scale (two-dimensional) structure of the #ow, in which case two-dimensional PIV
methods would still yield reasonable answers.

4. Noca (1997) conducted additional experiments for the case of a circular cylinder in
steady motion (natural shedding) at low Reynolds number, for which the normalized lift
coe$cient is very low (\0)2). The r.m.s values for the lift coe$cient compared reasonably
well with those from numerical computations, and the di!erent force equations yielded
similar results. However, it was not possible to obtain self-consistent results with either
a change in domain size or a relocation of the coordinates, even though the three equations
compared satisfactorily for a particular choice of geometry. One reason could have been the
three dimensionality of the #ow induced by asymmetric end conditions and oblique vortex
shedding. Another source of error mentioned above may have been &&moment arm''
behaviour of the position vector x, which requires a balance between comparatively large
terms to produce a small force coe$cient (Noca 1997).

In conclusion, it appears that these Navier}Stokes based methods for estimating forces
are very e!ective for #ow"elds that are either highly resolved or well accentuated (with large
force coe$cients). In particular, with present day DPIV resolution, these techniques should
apply satisfactorily to bodies in forced motion (present study) or freely oscillating bodies
(Gharib 1999; Khalak & Williamson 1997) for which force coe$cients can be very large
(\5). Additional work is needed to validate these methods in less favorable situations,
especially for cases where force coe$cients are small (\0)2).
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APPENDIX A: VECTOR IDENTITIES

Most of the transformations used in this paper rely on identities which involve the position vector x.
These identities, given below, are trivial and can be proven with indicial notation:

x'' ($''a)"(N!1)a#$ (x ' a)!$ ' (xa), (A1)

$'' (x''/I)"!I (N!1)/!I(x '$/)#x$/ (A2)

$ ' (ax)"x($ ' a)#a. (A3)

In these relations, a is an arbitrary vector, / a scalar, I the unit tensor, and N the space dimension.

APPENDIX B: INTEGRAL IDENTITIES

There are some useful integral identities, one of which is used intensively by Sa!man (1993):

P
V

x''$''ad<"(N!1)P
V

ad<#Q
S

x'' (n} ''a) dS , (B1)

where a is an arbitrary vector "eld in a simply-connected volume < bounded by a surface S, N is the
dimension of the space under consideration (N"3 in 3-D and N"2 in 2-D for example) and n} is
the unit normal to the surface S.

Invariably, anyone trying to relate the vorticity to the velocity "eld will (unknowingly) &&derive'' this
identity. As a matter of fact, setting a"u in equation (B1) yields

1

N!1 P
V

x''x d<"P
V

ud<#
1

N!1 Q
S

x'' (n} ''u) dS , (B2)

where u is the velocity "eld and x"$''u the vorticity. The term on the left-hand side is the impulse
as mentioned in the text, whereas the volume integral on the right-hand side should remind us of the
#ow momentum. It is equation (B2) (or an equation similar to it) which appears in the works of
Thomson (1883), Lamb (1945), and Batchelor (1967), although it is generally obtained from integra-
tion by parts without invoking equation (B1) like it was done here. Sa!man (1993) is among the few
authors who calls directly upon equation (B1) for his derivations.

Burgatti (1931)*see also Truesdell (1954)*derived an identity, of which equation (B1) was
a particular case. However, even though Burgatti recovered many already known #uid-dynamic
identities from his generalized identity, he did not write down equation (B1) nor equation (B2)
explicitly, probably because he was not aware of the latter at the time.

Thus, the identity given in equation (B1) cannot really be attributed to any single author. Also, as
we shall see, its proof is quite trivial, and ought not be christened with any particular name.

The proof of this identity starts from a volume integration of the vector identity (A1):

P
V

x'' ($''a) d<"(N!1)P
V

ad<#P
V

[$ (x ' a)!$ ' (xa)D d<.

The second integral on the right-hand side can be transformed into a surface integral through Green's
theorem, thus yielding

P
V

x'' ($''a) d<"(N!1)P
V

ad<#Q
S

n} ' [(x ' a) I!(xa)] dS.

The surface integrand may be put into a more elegant form,

n} )[(x ' a) I!(xa)]"(x ' a)n} !(n} ' x) a,

"x'' (n} ''a)

from which we obtain the desired result.



Figure 23. Doubly connected domain showing the surface of integration for the Pressure Identity.
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Another useful identity, used neither by Sa!man (1993) nor Moreau (1952), removes the need for
integrations over the &&#uidic body'':

(N!1)Q
S

/n} dS"!Q
S

x'' (n} ''$/) dS, (B3)

where / is a single-valued scalar on the surface S. Note that the domain enclosed by the surface can be
multiply connected and need not to be simply connected (see Figure 23). This identity also appears in
the paper by Wu & Wu (1996).

For a simply connected domain, identity (B3) is just a particular case of identity (B1) in which we set

a"$/.

As a matter of fact, we would have

P
V

x''$'' ($/) d<"0

and, from Green's theorem,

P
V

$/d<"P
S

/n} dS,

and inserting these results into identity (B1) would, in fact, yield identity (B3). The above proof is
actually the one given by Sa!man (1993). However, for a multiply connected domain, this derivation
fails since the integrations are ill-de"ned in parts of the volume <.

For a multiply connected domain, we start by multiplying identity (A2) with the unit normal n} from
the left, and perform a surface integration over S:

Q
S

n} '$'' (x''/I)dS"!(N!1)Q
S

/n} dS!Q
S

[n} ' (x '+/)!(n} 'x) $/]dS.

From Stokes' theorem, the surface integral on the left-hand side vanishes exactly if the scalar / is
single-valued on the surface S:

Q
S

n} '+'' (x''/I ) dS,0.
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The last integral on the right-hand side can be rewritten using the elementary vector identity

n} ' (x)$/)!(n} 'x)$/"x'' (n} ''$/),

and equation (B3) is thus recovered. The reader must appreciate that this derivation does not require
integrations anywhere else other than on the surface itself. Also, note that this identity requires the
scalar / to be single-valued. In this paper, the scalar / just represents the pressure "eld, which is
assumed single-valued from a physical point of view.

An additional useful identity is the time derivative of a surface integral, in which the surface itself is
time-dependent (Aris 1962):

d

dt Q
S(t)

n} '' dS"Q
S(t)

n} 'C
L'
Lt

#u
S
($ '')D dS. (B4)

Aris (1962) only gives the relation for a vector, but it is easy to generalize it to a tensor.
Finally, for a divergence-free vector a, the following two integral relations may be obtained from

identities (A1) and (A3):

P
V

x'' (+''a) d<"Q
S

n} ' [(x ' a) I!xa#(N!1) ax] dS , with $ ' a"0. (B5)

P
V

ad<"Q
S

n} ' (ax) dS, with $ ' a"0. (B6)

Equation (B6) is given by Sa!man (1993).
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